Product Information

Product names may be followed by an X. Products labeled AF 1600 and AF 1600 X are equivalent, as are AF 2400 and AF 2400 X.

Description

Teflon* AF is a family of amorphous fluoroplastics. These materials are similar to other amorphous polymers in optical clarity and mechanical properties, including strength. They also resemble fluoroplastics in their performance over a wide range of temperatures, outstanding electrical properties, and chemical resistance. They are distinct from other fluoroplastics in that they are soluble in selected solvents and have high gas permeability, high compressibility, high creep resistance, and low thermal conductivity. They have the lowest dielectric constant and refractive index of any known fluoroplastic.

Processing

Teflon" AF can be compression molded, injection molded, or extruded. Through these processes, various solid shapes can be formed using the product. Forms include rods, tubes, bars, and sheet of various thicknesses.

In addition, Teflon" AF can be dissolved in certain perfluorinated solvents for the production of highly uniform thin films and coatings. Methods used to produce such forms include spin, spray, and dip coating.

Typical molding temperatures for Teflon" AF 1600 range from 240 to 275 °C (464 to 527 °F); for Teflon" AF 2400, the range is 340 to 360 °C (644 to 680 °F). The polymer begins to decompose above 360 °C (680 °F), so processing above that temperature should be avoided. Corrosion-resistant tooling is recommended, as it is for Teflon" FEP and PFA fluoroplastic resins.

Electrical Applications

In electronics, Teflon AF may be used in optoelectronic devices, where its optical clarity, temperature resistance, and dielectric properties are beneficial. It is essentially transparent to microwaves and can function as a "window" for high frequency antennas. The low dielectric constant and dissipation factor may

be advantageous in the construction of electronic devices, including special circuit boards and hybrid devices.

Some specific uses are:

- Teflon AF has the ability to be cast from solution into a thin film that is transparent and stable to very short wavelength radiation (deep UV). This makes it an excellent candidate for use in pellicles. It has superior electrical properties, particularly for low signal distortion at high frequencies.
- Chemically resistant coating—where its low dielectric constant and electrical absorption coefficient are important.
- Its moldability plus its low thermal expansion coefficient make it an excellent candidate for connectors.
- It can also be used as a sight window in harsh chemical environments.

Optical Applications

Teflon™ AF can be used as a low-refractive index coating or covering for optical devices, including those that must operate over a wide temperature range and in chemically aggressive environments. Teflon™ AF offers a high level of transmission throughout the optical spectrum from infrared through ultraviolet.

Some specific uses are:

- In fiber optics as a low refractive index, high temperature cladding material over silica, methacrylates, and polycarbonates.
- Its optical properties of high transmission and broad spectrum transmission make it practical as an anti-reflective coating for high energy laser applications.
- The properties of high temperature tolerance, chemical resistance, high transmission, and mechanical strength make the material ideal for use as a window. It would also be good for optical sensing and diagnostic devices.
- The low refractive index combined with its other optical properties make Teflon" AF useful as an anti-reflective coating. It is also good as a protective coating, where optical transmission is important.

Typical Property Data for Teflon™ AF Resins

	ASTM		Grade	
Property	Method	Unit .	1600	2400
Electrical				
Dielectric Constant Dissipation Factor Dielectric Strength	D150 D150 D149	kV/0.1 mm	1.93 0.0001-0.0002 2.1	1.90 0.0001-0.0003 1.9
Optical				
Optical Transmission Refractive Index ABBE Number	D1003 D542	%	>95 1.31 92	>95 1.29 113
Mechanical				
Yield Strength 23 °C (73 °F) 220 °C (428 °F)		MPa	27.4 ± 1.0 6.7 ± 5.9	26.4 ± 1.9 8.7 ± 4.0
Tensile Strength 23 °C (73 °F) 220 °C (428 °F)	D638	MPa	26.9 ± 1.5 7.7 ± 6.1	26.4 ± 1.9 4.2 ± 1.8
Elongation at Break 23 °C (73 °F) 220 °C (428 °F)	D638	%	17.1 ± 5.0 89.3 ± 13.1	7.9 ± 2.3 8.4 ± 4.1
Tensile Modulus	D638	GPa	1.6	1.5
Flexural Modulus 23 °C (73 °F) 220 °C (428 °F)	D790	GPa	1.8 ± 0.1 1.0 ± 0.1	1.6 ± 0.1 0.7 ± 0.1
Hardness Rockwell, 23 °C (73 °F) Durometer, Shore D	D785 D1706		103	97.5
23 °C (73 °F) 220 °C (428 °F)			77 70	75 65
Impact Strength	Notched Izod	N	_	_
Deflection Temperature 66 psi 264 psi	D648	°C (°F)	156 (313) 154 (309	200 (392) 174 (345)
Chemical			,	
Contact Angle with Water Critical Surface Energy Taber Abrasion Chemical Resistance	D570	Degrees Dynes/cm cc/2000 cycles	104 15.7 0.107	105 15.6 0.2
Water Absorption Gas Permeability		%	<0.01	<0.01
$\begin{array}{c} \text{H}_2\text{O} \\ \text{O}_2 \\ \text{N}_2 \\ \text{CO}_2 \end{array}$		Barrer Barrer Barrer Barrer	1142 340 130	4,026 990 490 2800
Other				
T _g Specific Gravity Melt Flow Rate (5.0 kg) Volume Coefficient of Thermal Expansion	D3418 D792 D1238 E831	°C (°F) g/10 min ppm/°C (°F)	160 (320) ± 5 1.78 4 ±2 (at 260 °C [500 °F]) 260 (500)	240 (464) ± 10 1.67 13 ±4 (at 360 °C [680 °F]) 301 (572)

Mechanical Applications

Teflon AF exhibits excellent mechanical and physical properties at end-use temperatures up to the glass transition temperature. Teflon AF also demonstrates good dimensional stability, reduced mold shrinkage, a smooth surface, and rigidity at high use temperatures. These characteristics, coupled with machinability and processing versatility, make Teflon AF an excellent candidate for specialized chemical and industrial applications.

Some specific uses are:

- For chemically resistant molded parts and objects
- · Sight windows in harsh chemical environments
- Connectors

Chemical Applications

As a fluoroplastic, Teflon AF has high resistance to chemical attack. Teflon AF can be fabricated into films, coatings, and smooth surfaced products, and also molded into high performance mechanical parts that can function in severe exposure conditions of high temperature, harsh chemicals, and destructive environmental agents. Teflon AF is an excellent candidate for the demanding and stringent conditions that exist in the electronic, chemical, military, and aerospace industries.

Some specific uses are:

- As a protective coating—where chemical resistance as well as
 the ability to withstand high temperatures is important: pipes
 and fittings; conveyor belts; sheets that are in contact with
 chemicals.
- Chemical containers (for specialty applications)—where it is necessary that the container not react with the contents and optical transmission is important: stopper coatings; bottles (can be shaped).

- Process windows—where optical properties as well as chemical inertness are important.
- Membranes and/or separators—the high gas permeability and chemical inertness make it an ideal candidate.
- Its low surface energy makes a good release surface.
- Its high gas permeability makes it an excellent separation medium for gases and liquids.

Safety Precautions

WARNING! VAPORS CAN BE LIBERATED THAT MAY BE HAZARDOUS IF INHALED.

Before using Teflon AF, read the Safety Data Sheet and detailed information in the latest edition of the "Guide to the Safe Handling of Fluoropolymer Resins", published by the Fluoropolymers Division of The Society of the Plastics Industry (www.fluoropolymers.org) or by PlasticsEurope (www.plasticseurope.org).

Handling Practices

Teflon" AF resins may contain parts per million of residual hexafluoroacetone (HFA). Because HFA hydrates are readily absorbed through the skin, it is necessary to avoid skin contact with the resin during processing. Chemours recommends the use of protective gloves when handling resin during manufacturing operations. Residual gases (including HF, COF₂, CO, and HFA) that diffuse from Teflon" AF resins, even at room temperature, may be harmful. To avoid exposure, all resin containers should be opened and used only in well-ventilated areas using local exhaust ventilation (LEV).

HOW TO USE THE TEFLON" BRAND NAME WITH YOUR PRODUCT

Teflon is a registered trademark of Chemours for its brand of fluoroplastic resins, coatings, films, and dispersions. The Teflon brand name is licensed by Chemours in association with approved applications. Without a trademark license, customers may not identify their product with the Teflon brand name, as Chemours does not sell such offerings with the Teflon trademark. Unlicensed customers may refer to the Chemours product offering with only the Chemours name and product code number descriptor as Chemours sells its product offerings. There are no fair use rights or exhaustion of rights to use the Teflon trademark from buying from Chemours, a Chemours customer, or a distributor without a trademark license from Chemours.

 $If you are interested in applying for a trademark \ licensing agreement for the \ Teflon "brand, please \ visit \ www.teflon.com/license$

CAUTION: Do not use Chemours materials in medical applications involving permanent implantation in the human body or contact with bodily fluids or tissues, unless the material has been provided from Chemours under a written contract that is consistent with Chemours policy regarding medical applications and expressly acknowledges the contemplated use. For further information, please contact your Chemours representative. For medical emergencies, spills, or other critical situations, call (866) 595-1473 within the United States. For those outside of the United States, call (302) 773-2000.

The information set forth herein is furnished free of charge and based on technical data that Chemours believes to be reliable. It is intended for use by persons having technical skill, at their own discretion and risk. The handling precaution information contained herein is given with the understanding that those using it will satisfy themselves that their particular conditions of use present no health or safety hazards. Because conditions of product use are outside our control, Chemours makes no warranties, express or implied, and assumes no liability in connection with any use of this information. As with any material, evaluation of any compound under end-use conditions prior to specification is essential. Nothing herein is to be taken as a license to operate under or a recommendation to infringe any patents.

NO PART OF THIS MATERIAL MAY BE REPRODUCED, STORED IN A RETRIEVAL SYSTEM OR TRANSMITTED IN ANY FORM OR BY ANY MEANS ELECTRONIC, MECHANICAL, PHOTOCOPYING, RECORDING OR OTHERWISE WITHOUT THE PRIOR WRITTEN PERMISSION OF CHEMOURS.

For more information, visit teflon.com/industrial For sales and technical support contacts, visit teflon.com/industrialglobalsupport

© 2016 The Chemours Company FC, LLC. Teflon and any associated logos are trademarks or copyrights of The Chemours Company FC, LLC. Chemours and the Chemours Logo are trademarks of The Chemours Company.